

Pathophysiology 16 (2009) 179–189

ISEP PATHOPHYSIOLOGY

www.elsevier.com/locate/pathophys

Reproductive and developmental effects of EMF in vertebrate animal models

Aris F. Pourlis*

Laboratory of Anatomy Histology & Embryology, Veterinary School, University of Thessaly Karditsa, Greece Received 10 August 2008; received in revised form 28 August 2008; accepted 30 January 2009

Abstract

This paper reviews the literature data on the effects of electromagnetic fields (EMF), in the reproductive organs as well as in prenatal and postnatal development of vertebrate animals. Review articles which have been published till 2001, regarding the reproductive and developmental effects of the entire range of frequency of electromagnetic fields, were surveyed. Experimental studies which were published from 2001 onwards were summarized. Special focus on the effects of radiofrequencies related to mobile communication in the above mentioned topics has been made. According to the majority of the investigations, no strong effects resulted regarding the exposure to EMF of mobile telephony in the animal reproduction and development. However further research should be done in order to clarify many unknown aspects of the impact of EMF in the living organisms.

© 2009 Elsevier Ireland Ltd. All rights reserved.

Keywords: Electromagnetic fields (EMF); Mobile phones; Teratology; Endometrium; Testis

1. Introduction

During the 20th century, the exposure to electromagnetic fields (EMF) became an important source of concern about the possible effects in the living organisms. The artificial sources of electromagnetic radiation have risen tremendously because of the ongoing needs on electricity, telecommunications, and electronic devices. In this context, World Health Organisation (WHO) established in 1996 the International EMF project in order to assess health and environmental effects of exposure to EMF in the frequency range from 0 to 300 GHz. For the purpose of this paper this range will be divided into static (0 Hz), extremely low frequency (ELF>0-300 kHz), intermediate frequencies (IF > 300-10 MHz) and radiofrequency (RF 10 MHz-300 GHz) fields [J. Juutilainen, Developmental effects of electromagnetic fields, Bioelectromagnetics 7 (2005) S107-S115]. The mobile phone technology is based on radiofrequency radiation with transmission of microwaves carrying frequencies between 880 and 1800 MHz [P.A. Valberg, T.E. van Deventer, M.H. Repacholi, Workgroup report:

E-mail address: apourlis@vet.uth.gr.

base stations and wireless networks-radiofrequency (RF) exposures and health consequences, Environ. Health Perspect. 115 (2007) 416–424].

The mobile telephony revolution took place in the last decade. There is an increasing number of cell phone users all over the world. Also, new technologies which use the spectrum of high frequency emissions are incorporated in many aspects of telecommunications. As a consequence, there is a lot of interest about the possible effects of the radiation emitted from the machines which are engaged in the telephony such as hand phones, base stations and transmitters.

The biological effects of EMF have been and are being investigated on different levels of organization. On the level of human populations, epidemiological studies are used whereas, on the level of individuals human, animal and plant *in vivo* experiments are carried out. Furthermore, on the level of organs, tissues and cells *in vitro* investigations are employed. Finally, on the sub-cellular level, biochemical and molecular techniques are utilized.

From another point of view, many studies have been carried out or are in progress about the various effects of radiation emissions regarding the behaviour, cancer, central nervous system, sleep, children, cardiovascular system, immune function, reproduction and development [3].

^{*} Tel.: +30 24410 66013.

^{0928-4680/\$ –} see front matter @ 2009 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.pathophys.2009.01.010

The present paper will focus on the existing data about the reproductive and developmental effects of EMF in vertebrates. Reproduction is a critical function of the organisms and involves two body systems the male and female genital system. The development comprises a series of events which begins with fertilization, continues with implantation, embryonic growth and terms with sexual maturity. In the context of systematic zoology, the vertebrates are close to the humans. Therefore, the animal studies could provide useful information on the comprehension of interaction of EMF with the living organism and on the possible commonality with the humans.

The biological effects of EMF of interest can be broadly grouped into thermal and non-thermal [4]. The thermal effects are associated with local heat production just like the mechanism of a microwave oven. The non-thermal mechanism is triggered by an amount of energy absorption, which is not directly associated with temperature change but rather to some other changes produced in the tissues.

The goal of this paper is to present the up to date available data about the EMF and their potential effects on reproduction and development, filling the gap of information from the most recent published reviews. All the bibliographic data which will be presented were collected exclusively from scientific journals published in English and partially in other languages. The survey includes studies which were published from 2001 onward. The studies which relate to the impact of mobile phone electromagnetic fields will be presented thoroughly and independently from the date of their publication.

2. Historical background

The first paper which I found in the medical literature, regarding the effects of EMF on the development of vertebrates, was published in 1893 in an anatomical journal from Windle [5]. The author summarized the observations of three scientists and added his own about the effects of electricity on the chicken embryos. Two years later the same author [6], published an account on the effects of electricity and magnetism on development.

In 1980 two papers were published about the biological effects of microwave radiation. Cook et al. [7] published a comprehensive survey regarding the very early research on the biological effects of electromagnetic fields. The early work on short waves from 1885 to 1940 was presented. Following, the authors summarized the available data from 1940 to 1960. Leach [8] provided an account on the genetic, growth and reproductive effects of microwave radiation including early studies in this field that were published from 1959 to 1979. The majority of revised papers dealt with animals. Later, Algers and Hennichs [9] summarized the biological effects on vertebrates, of electromagnetic fields where the frequency did not exceed 100 Hz. The authors included many studies about the impact of EMF on farm animals. The same

year, a specialized review was published on the effects of non-ionizing radiation on birds [10].

Berman et al. [11], presented the results of a large multinational experimental effort (Henhouse project) regarding the low frequency EMF effects on chick embryos. Juutilainen [12], Chernoff et al. [13], Brent et al. [14] presented detailed reviews of the literature about the effects on reproduction related to low frequency EMF.

Jensh [15] reviewed behavioral teratologic studies using microwave radiation with special interest to continuous wave (CW) 915, 2450, or 6000 MHz radiation.

Verschaeve and Maes [16] reviewed the genetic, carcinogenic and teratogenic effects of RF (300 MHz-300 GHz). Regarding the effects on reproduction and teratogenesis, studies from 1961 to 1991 were surveyed. The majority of these experimental studies dealt with the exposure of animals at 2.45 GHz. The same year, Huuskonen et al. [17] reported on the teratogenic and reproductive effects of low frequency (0-100 kHz) magnetic fields associated with the use or transmission of electric power or emitted from video display terminals. The animal studies that were surveyed, have been published from 1987 to 1997 regarding the effects of alternating magnetic fields on prenatal development of rats and mice. In the same paper, studies on the effects of prenatal exposure of alternating magnetic fields on postnatal development were included. Brent [18] provided a thorough review of in vivo and in vitro studies on the reproductive and teratologic effects of low frequency EMF. The survey of reproductive effects has involved studies with chick embryos, chickens, cows, mice, and rats from 1969 to 1996. O'Connor [19] recorded the intrauterine effects in animals exposed to radiofrequency and microwave fields with a special feature. The SAR of the surveyed studies was above the limit of 0.4 W/kg.

Experimental studies on the teratologic effects or developmental abnormalities from exposure to RF electromagnetic fields in the range 3 kHz–300 GHz were reviewed from Heynick and Merritt [20]. The review included investigations with insects, birds (chicken, quails, turkeys) and mammalian species (mice, rats) as well as non-human primates which appeared from 1974 to 2000. A brief critical review on the developmental effects of extremely low frequency (ELF) electric and magnetic fields provided by Juutilainen [21]. Löscher [22] published a survey of the effects of radiofrequency electromagnetic fields on production, health and behaviour of farm animals.

Juutilainen [1] reported on the effects of EMF on animal development. In his review, he surveyed specific topics such as the Henhouse project, the interaction of LF-IMF EMF with known teratogens, and the behavioral teratology of RF. Saunders and McCaig [23] summarized the possible effects on prenatal development of physiologically weak electric fields induced in the body by exposure to extremely low frequency electromagnetic fields and of elevated temperature levels that might result from exposure to radiofrequency (RF) radiation.

Table 1Overview of investigations on EMF effects on animal genital system.

Animal species	Exposure frequency	Exposure parameters	Exposure duration	Endpoint	Results	Comments	Reference
Mouse Swiss	50 Hz	25 mT	Continuous 90 days	Effects on reproductive ability	No effect on the fertility of male and female mice. The ovarian weight was		[27]
Mouse CD1 (BALB/c X DBA/2)	60 Hz	2 mT	Continuous for 72 h or 8 h/day for 10 days	Sperm morphology	significantly increased No statistically differences were observed	Two groups were treated with mitomycin C. Sperm abnormalities were found in the group exposed versus the group treated with mitomycin C alone	[28]
Mouse BALB/c	60 Hz	0.1 or 0.5 mT	24 h/day for 8 weeks	Germ cell apoptosis in the testes	No significant changes in testicular weights. Decrease of normal seminiferous tubules. Increase of the germ cell death	·	[29]
Rat Sprague–Dawley	60 Hz	5, 83.3, 500 mT	Continuous 21 h/day from day 6 of gestation to day 21 of lactation	Spermatotoxicity and reproductive dysfunction inthe F1 offspring	No detectable alterations in offspring spermatogenesis and fertility		[30]
Rat Sprague–Dawley	50 Hz	$25 \pm 1 \mu T$	Continuous for 18 weeks	Effects on sperm count, weights of testes, seminal vesicles, preputial glands	No effect on the weight of testes. Significant reduction of the weight of seminal vesicles and preputial glands. Significant reduction in sperm count		[31]
Rat Sprague–Dawley	50 Hz	$1.35\pm0.018\mathrm{mT}$	2 h/day, 7days/week for 2 months	Sperm count, morphological changes of testes	No significant alterations were observed	Funding not mentioned	[32]
Rat Wistar albinoç♂	50 Hz	1 mT (mean value)	3 h/day for 50 or 100 days	Morphological evaluation of uterus and ovaries	Ultrastructural alterations in germinal epithelium of ovaries in the experimental group (50 days) as well as in tunica albuginea (100 days)	Ambiguous observations in the uterus	[33]
Rat Sprague–Dawley♂♀	20 kHz	6.25 mT	8 h/day, 5 days/week for 90 days	Histopathological examination of various organs	No differences were seen in testis and ovary		[34]

Table 1 (Continued)							
Animal species	Exposure frequency	Exposure parameters	Exposure duration	Endpoint	Results	Comments	Reference
Rat Wistar ී ද	50 Hz		3 weeks <i>in</i> <i>utero</i> and 5 weeks postnatal	Testes	Morphological changes in the boundary tissue of the seminiferous tubules		[35]
Rat Sprague–Dawley⊋o	20 kHz sine waves	6.25 mT	8 h/day for 12 or 18 months	Histopathological examination of various organs	No differences were seen in testis and ovary		[36]
Rat Wistar	30–300 GHz	>0.3 mW/cm ²	30 min for 63 days	Spermatogenesis	Morphological changes in snermatozoa	Scanty data presentation	[37]
Rat Wistar	50 Hz		8 h/day for 8 months	Histological evaluation of testes	Mean seminiferous tubule diameter and testicular weight were significantly lower in exposed group. Histologic damage score was threefold in experimental group versus control		[38]

A special topic, the effects of EMF from power lines on avian reproductive biology, was reviewed by Fernie and Reynolds [24]. Krewski et al. [25], reviewed studies referring to various disciplines regarding the effects of RF. The included literature was published between 2001 and 2003. A novelty of this paper, was a discussion of the reports of various authorities and committees about the potential health risks associated with exposure to RF fields. A gap in the literature regarding the biological effects of EMF in the intermediate frequency range was covered by the review of Shigemitsu et al. [26].

During the last decade, many reports from authorities (local, national and international) and expert panels have been uploaded on the web [2].

It is suggested that the reader refer to the above-mentioned review articles and electronic addresses, in order to assemble a more complete and detailed view of the biological effects of EMF.

3. Male genital system

The testes are very important organs situated externally to the body and enclosed by the scrotum. The testicular parenchyma is the site of an intense proliferation and differentiation of the germinal cells that will become the sperm cells. The testes are very sensitive to temperature variations and for this reason the scrotum, which contains the testicular parenchyma, has a specialized contractile structure.

Studies that have evaluated EMF effects (mainly LF) on the genital systems of the vertebrates are summarized in Table 1.

Regarding mobile telephony, the first study conducted by Dasdag et al. [39] investigated whether there are adverse effects due to microwave exposure emitted by cellular phones in male Wistar albino rats. The animals (n = 18) were divided in three groups (control, standby exposed group, speech exposed group). Specific energy absorption rate (SAR) was 0.141 W/kg. Rats in the experimental groups were exposed for 2 h/day for 1 month in standby position, whereas phones were turned to the speech position three times for 1 min. The decrease of epididymal sperm counts in the speech groups was not found to be significant. Differences in terms of normal and abnormal sperm forms were not observed. Histological changes were especially observed in the testes of rats in the speech group. Seminiferous tubular diameter of rat testes in the standby and speech groups was found to be lower than the sham group. Rectal temperatures of rats in the speech group were found to be higher than the sham and standby groups. The rectal temperatures of rats before and after exposure were also found to be significantly higher in the speech group.

The same group of authors [40], failed to reproduce the results of their previous work. Sixteen Sprague–Dawley rats were separated into two groups (control, experimental). They were exposed to 890–915 MHz pulsed wave (PW) daily for

20 min/day for 1 month. For 250 mW average radiated power, SAR was 0.52 W/kg. No differences were observed in the percentages of epididymal normal and abnormal sperms, the epididymal sperm count, as well as in the seminiferous tubule diameter between control and experimental groups. Also, the testicular biopsy score as evaluated by Johnson's scale did not differ significantly.

Aitken et al. [41] assessed the testis of mice irradiated with 900 MHz in a waveguide, with an exposure condition SAR 90 mW/kg for 7 days at 12 h/day. The authors did not observe abnormalities regarding the sperm number, morphology and vitality. However, they reported significant damage to the mitochondrial genome as well as to the nuclear-globin locus.

Results similar to a previous study [39] regarding the diameter of the seminiferous tubules of rat testes were obtained by Ozguner et al. [42]. During the experiment, 20 male Sprague–Dawley rats (5 months of age) were either exposed to 900 MHz CW (average power density 1 ± 0.4 mW/cm²) or not (control group). Rats exposed 30 min/day, for 5 days/week for 4 weeks. The authors also did not observe significantly different values of weight of testes, testicular biopsy score count and the percentage of interstitial tissue. However, the mean height of the germinal epithelium was found decreased in the group of rats that had been irradiated.

Forgács et al. [43] repeatedly exposed male NMRI mice to 1800 MHz GSM like microwave radiation at 0.018–0.023 W/kg whole body SAR. 11–12 sham exposed and 11–12 exposed mice were used. The animals were exposed ten times (over 2 weeks) and the duration of exposure was 2 h/day. No microwave exposure-related morphological alterations were found in testis, epididymis and prostate.

Adult male rats were examined after exposure at subcrhronic exposure to RF emitted from a conventional cell phone on their testicular function. Sixteen Wistar rats were used at age 30 days. The animals were exposed for 1 h daily during 11 weeks. The experimental group (n = 8) was exposed to 1835–1850 MHz at 0.04–1.4 mW/cm². Total body weight and absolute and relative testicular and epididymal weights did not change significantly. Epididymal sperm count was not significantly different between the groups. Regarding the histomorphological endpoints of the study, no difference was found between the experimental and control arm [44].

The effect of cellular phone emissions on sperm characteristics in 16 Sprague–Dawley rats were studied [45]. The laboratory animals were divided in two groups (experimental, control) and exposed to four cell phones which had a personal communications service code division multiple access frequency band of 1.9 GHz (800 MHz digital and 800 MHz analog). The rats received daily (3 h–30 min rest–3 h) cell phone exposure for 18 weeks. The SAR ranged from 0.9 to 1.80 W/kg whereas the power from 0.00001 to 0.607 W, according to the specific mode of function. The authors analyzed the morphology of the sperm cells from epididymis of rats. The percentage of deformities for the experimental group was 34.3% and the percentage of deformities for the control group was 32.1%. This difference in the occurrence of deformities between the two groups was not statistically significant (p > .05) through a paired t test. The total sperm counts from the testes were not significantly different between the two groups. None of the temperature differences between the two groups were statistically significant.

Sixteen Sprague–Dawley rats were used to evaluate the bcl-2 protein (an anti-apoptotic protein) in rat testes. The experimental group (n=8) was exposed to commercial (GSM) cellular phones irradiation for 20 min/day for 1 month. Average power density was measured at 0.047 mW/cm² and SAR levels changed between 0.29 and 0.87 W/kg. The testes were investigated by means of immunohistochemistry. No difference was observed between testes sections of the sham and experimental groups in terms of bcl-2 staining. These results indicate that the radiation emitted from 900 MHz cellular phones did not alter the anti-apoptotic protein in the testes of rats [46].

In order to investigate the apoptosis-inducing effect of mobile phone exposure on spermatogonia in seminiferous tubules, 31 Wistar albino male rats were divided in three groups such as cage control (n=10), sham exposed (n=7), and experimental (n=14). The 2 h/day (7 days/week) exposure of 900 MHz radiation (power density 0.012–0.149 mW/cm² and SAR 0.07–0.57 W/kg) over a period of 10 months was evaluated by means of immunohistochemistry. The long-term radiation did not affect the active caspace-3 levels in testes of rats. Caspace-3 is a typical feature of apoptosis [47].

4. Female genital system

Studies on the impact of RF in the female genital system are scarce. Two studies were conducted in order to evaluate the effects on endometrial apoptosis and the ameliorating effects of a combination of vitamin E and C against EMF damage.

Oral et al. [48], exposed sexually mature female rats (16 weeks old) to 900 MHz radiation, 30 min/day for 30 days. Twenty-four Wistar albino rats were divided in three groups (sham exposed, EMF exposed, EMF exposed treated with vitamin C and E). The animals were exposed at 1.04 mW/cm² (SAR 0.016–4 W/kg). The effect of microwaves was examined in rat endometrium by means of immunohistochemistry. Endometrial apoptosis was observed. Guney et al. [49], repeated the experiment with the addition of another group (control). Histological changes in endometrium, diffuse and severe apoptosis in the endometrial surface, epithelial and glandular cells were reported regarding the group exposed to EMF. Also, eosinophilic leucocyte and lymphocyte infiltration were seen in the endometrial stroma.

Table 2	
Overview of investigations on EMF effects on animal development.	

Animal species	Exposure frequency	Exposure parameters	Exposure duration	Endpoint	Results	Comments	Reference
Rat Sprague–Dawley	50 Hz	7, 70, 350 mT	22 h/day during 0–7 or 8–15 day of gestation	Effects on teratogenicity and embryonic development	No differences regarding embryonic deaths, fetal weight and teratogenicity		[50]
Mouse ICR	50 Hz	Sham (0.1–1 μT), 0.5, 5 mT	9 weekso ⁷ 2 weekso prior to mating	Effects on teratogenicity and embryonic development	No differences regarding embryonic deaths, fetal weight and teratogenicity		[51]
Mouse Swiss Webster	0 Hz-25 MHz		1 week beginning from the 18th day of pregnancy	Morphological changes in brain, thymus, adrenal gland during embryonic development	Pathological changes were observed in the neonates		[52]
Rat Sprague–Dawley	60 Hz	0 (sham group), 5, 83.3, 500 mT.	22 h/day during 6–20 day of gestation	Developmental toxicity	No differences regarding embryonic deaths, fetal weight and teratogenicity		[53]
Chicken	50 Hz	1.33–7.32 mT	24 h	Effects on teratogenicity and embryonic development	Significant difference in the percentage of abnormal embryos versus control was found in 4.19, 5.32, 5.86, and 6.65 densities. Some embryos with extra ribs, defects in ribs and vertebrae, anuria and abnormal beaks were observed	Funding not mentioned	[54]
Mouse ICR	20 kHz	6.5 mT	8 h/day from 2.5 to 15.5 days post-coitum	Effects on teratogenicity and embryonic development	No statistically significant differences in the number of implantation, embryonic death, resorption, growth retarded fetuses, external and skeletal abnormalities		[55]
Chicken Leghorn HR7	50 Hz	1 μΤ, 500 μΤ, 1 mT	Continuous for 15 or 21 days	Effects on embryo/fetus	At 15 days of incubation body weight was significantly lower versus controls. At 21 days of incubation the body weight and cranial diameters were smaller versus control. No differences in brain weight were observed in all groups	Funding not mentioned	[56]
Mouse ♀	Static magnetic field	400 mT	6 min/day from 7.5 to 14.5 day of pregnancy	Teratogenic effects	Polydactylism, abdominal fissure, fused ribs, vestigial 13th rib, brain hernia, curled tail		[57]
Mouse Q	50 Hz	1.2 mT	8 h/day during pregnancy	Body weight of dams, development of offspring	Fetal loss, malformed fetuses, retardation of growth of the offspring in the first 2 weeks after birth	Article in chinese	[58]
Chicken White Leghorn eggs	50 Hz	1.33–7.32 mT	4 days	Morphological evaluation of embryos/fetuses	Abnormal brain cavities, spina bifida, monophthalmia, ocular defects and growth retardation		[59]

5. Developmental effects

The critical phases in the dynamic process of development take place mainly in utero (mammals) or in ovo (birds) i.e. during the embryonic period. The main bulk of investigations were performed regarding the possible effects on animals after irradiation, during in utero or in ovo development. The effects on development are determined by endpoints such as weight gain, congenital malformations, resorptions, and number of litters. These endpoints will be considered for various exposure conditions. The effects of EMF (mainly LF) on animal development are summarized in Table 2. Egg production was reduced (8%) when young laying hens have been continuously exposed to CW 915 MHz with an incident power of 800 mW during the first 2.5 weeks, 0 mW during the following week and 200 mW for the rest of experiment. Hatching of fertile and total eggs was not significantly influenced. No macroscopic malformations were observed in the chicks or dead embryos [60].

Jensh et al. [61] irradiated pregnant Wistar albino rats at a power density level of 10 mW/cm², at a frequency of 915 MHz and average SAR 3.57 W/kg. The animals were exposed for 6 h/day from day 1 to day 21 of gestation. No significant teratogenic signs were observed regarding the resorption rate, malformation rate, mean litter size, fetal weight and number of live and dead fetuses. The experiment was repeated and extended in order to analyze the embryonic and postnatal development of offspring [62]. Eleven pregnant rats were irradiated and 19 rats were used as control animals. All animals delivered and raised their offspring (F_{1a}) until weaning at 30 days of age. Ten days later females were rebred and teratologic evaluation was conducted on the resultant F1b fetuses. At 90 days of age, reproductive capability was evaluated and a standard teratologic analysis performed on the resultant F2 offspring. No significant morphologic changes were revealed.

Pregnant rats were exposed at 970 MHz for 22 h/day from the 1st to 19th day of pregnancy [63]. The SAR values varied from 0.07, 2.4 and 4.8 W/kg. The embryo mortality, fetal weight, skeletal ossification, as well as maternal fertility were evaluated. The exposure with SAR 4.8 W/kg caused reduced (-12%) fetal body weight versus the control. All the other examined parameters were not significantly different.

Klug et al. [64] exposed rat embryos (9.5 days old) for up to 36 h to 900 MHz. The modulation frequency was fixed at 215 Hz and the SAR values were calculated at 0.2, 1 and 5 W/kg. The endpoints of the experiment were crown-rump length, number of somites as well as embryonic malformations. No significant changes were observed on the growth and differentiation parameters of the embryos. Magras and Xenos [65] investigated the possible effects of radiofrequency radiation on prenatal development in mice. The study consisted of *in vivo* experiments at several places around an "antenna park" where the frequency emissions ranged from 88.5 to 950 MHz. At these locations RF power densities between 168 and 1053 nW/cm² were measured. Twelve pairs of mice, divided in two groups, were placed in locations of different power densities and were repeatedly mated five times. One hundred eighteen newborns were collected. They were measured, weighed, and examined macro- and microscopically. A progressive decrease in the number of newborns per dam was observed, which ended in irreversible infertility. The prenatal development of the newborns, however, evaluated by the crown-rump length, the body weight, and the number of the lumbar, sacral, and coccygeal vertebrae, was improved. Wistar albino rats [15] were exposed through pregnancy for 6 h each day to CW 915 MHz radiation at a power density level of 10 mW/cm². Teratologic evaluation included the following parameters: mean litter size, maternal organ weight and organ weight/body weight ratios, body weight ratios of various organs (brain, liver, kidneys, and ovaries), number of resorptions and resorption rate, number of abnormalities and abnormality rate, mean term fetal weight. Mothers were rebred, and the second, unexposed litters were evaluated for teratogenic effects. Animals exposed to 915 MHz did not exhibit any consistent significant alterations in any of the above parameters.

Wistar rats were continuously exposed [66] during pregnancy to a low-level (0.1 mW/cm²) 900 MHz, 217 Hz pulse modulated EMF. Whole body average SAR values for the freely roaming, pregnant animals were measured in models; they ranged between 17.5 and 75 mW/kg. No differences between exposed and sham exposed dams or offspring were recorded in terms of litter size, evolution of body mass and developmental landmarks of litter mates. The effects of microwaves emitted by cellular phones on birth weights of rats were investigated by Dasdag et al. [67]. Thirty-six Wistar albino rats were divided into four groups. Each experimental or sham exposed group comprised six males or 12 females. The rats were exposed at 890-915 MHz (SAR 0.155 W/kg). Males were exposed daily for 3×1 min during 2 h/day for 1 month. Females were exposed in the same way until they gave birth. When the offspring became adult the experiment was repeated on them. No significant differences were observed between rectal temperatures in the sham and experimental groups. The birth weight of offspring in the experimental group was significantly lower than in the sham exposed group. However in the next generation of rats all parameters investigated were normal. Pregnant Sprague-Dawley rats were exposed [68] to ultra wide band (UWB) 0.1-1 GHz radiation in order to determine if teratological changes occur in rat pups as a result of (1) daily UWB exposures during gestation days 3 ± 18 , or (2) as a result of both prenatal and postnatal (10 days) exposures. Dams were exposed either to (I) UWB irradiation with average whole body specific absorption rate 45 mW/kg (II) sham irradiation or (III) a positive control. Offspring were examined regarding litter size, sex-ratios, weights, coat appearance, and tooth eruption. The pups postnatally exposed were examined for hippocampal morphology. Generally, no significant differences were found between the exposed and sham group. The medial-to-lateral length of the hippocampus was significantly longer in the

Table 3
Summary of animal studies on effects of EMF (related to mobile telephony), on reproduction and development

Animal species	Exposure frequency	Endpoint	Effect	Reference
Chicken	915 MHz	Development	No	[60]
Rat	915 MHz	Development	No	[61]
Rat	915 MHz	Development	No	[62]
Rat	970 MHz	Development	No	[63]
Rat	915 MHz	Development	No	[15]
Rat	900 MHz	Development	No	[64]
Mouse	88.5–950 MHz	Fertility/development	Yes/no	[65]
Rat	890–915 MHz	Testes	Yes	[39]
Rat	900 MHz	Development	No	[66]
Rat	0.1–1 GHz	Development	No	[68]
Rat	890–915 MHz	Development	Yes	[67]
Chicken	900 MHz	Development	Yes	[69]
Rat	890–915 MHz	Testes	No	[40]
Chicken		Development	Yes	[70]
Rat	900 MHz	Testes	No	[42]
Mouse	900 MHz	Testes	No	[41]
White stork	900–1800 MHz phone mast	Reproduction	Yes	[74]
Chicken	900 MHz	Kidney development	Yes	[71]
Mouse	1800 MHz	Testes	No	[43]
Rat	900 MHz	Endometrium	Yes	[48]
Rat	900 MHz	Brain development	No	[72]
Rat	1835–1850 MHz	Testes	No	[44]
Rat	1.9 GHz	Sperm	No	[45]
Tit	1200-3000 MHz	Reproduction	No	[75]
Rat	900 MHz	Endometrium	Yes	[49]
Chicken	900 MHz	Development	Yes	[73]
Rat	900 MHz	Testes	No	[46]
Rat	900 MHz	Testes	No	[47]

UWB-exposed pups than in the sham exposed animals but could not correlated with neurological dysfunction. The male offspring exposed *in utero* to UWB mated significantly less frequently than sham exposed males, but when they did mate there was no difference in fertilization and offspring numbers from the sham group.

Bastide et al. [69] reported chicken embryo mortality from day 7 to day 11 of incubation. This mortality reached 64% compared to 11% in controls. The maximum level of embryonic mortality was observed in the eggs placed near the telephone.

Chicken embryos were exposed to EMF from GSM mobile phone during the embryonic development [70]. The embryo mortality rate in the incubation period increased to 75% versus 16% in control group.

Ingole and Ghosh [71] studied by means of light microscopy the developmental effects on the avian kidney of radiation, from a cell phone handset (900 MHz frequency, power of 2 W and SAR of 0.37 W/kg). The authors reported morphological alterations on the epithelium of the renal tubules as well as of the renal corpuscles in E6, E8 and E10 chicken embryos.

The possible impact of cell phone radiation in the developing central nervous system of male Wistar rats was examined [72]. The animals were exposed to 900 MHz signal for 2 h/day on 5 days/week. After 5 weeks of exposure at whole body average SAR of 0.3 or 3 W/kg or sham exposure no degenerative morphological changes were found. The results about the effects of exposing fertilized chicken eggs to a mobile phone over the entire period of incubation were published recently [73]. In this study, a series of 4 incubations were employed. During each incubation, 4 groups were used (control I, control II, experimental, sham). In the experimental group, the cell phone in call position was placed near (≤ 25 cm) the eggs, whereas in the sham group the cell phone in off position was placed 1.5 m away from the exposed group. A significantly higher percentage of embryo mortality was observed in the experimental compared to the sham group in 2 of the 4 incubations. The lethal effects of embryo development in the experimental group were mainly observed between the 9th and 12th day of incubation.

Another issue that in recent years has attracted the attention of scientists is the effects of radiation from RF antennas on the biology of wild birds.

Balmori [74] investigated the possible effects of EMF from phone masts on a population of White stork (*Ciconia ciconia*). The total productivity in the nests located within 200 m of antennas was 0.86 ± 0.16 versus 1.6 ± 0.14 for those located further than 300 m. Another interesting observation, was that, 40% of the nests within 200 m of the antennae never had any chicks, while only 3.3% located further than 300 m never had chicks.

The influence of a military radar station [75] emitting pulsed modulated microwave radiation of 1200–3000 MHz was examined in tits (*Parus* sp). Experimental nest-boxes were either exposed to a mean level of 3.41 ± 1.38 or 1.12 ± 0.84 W/m². For control nest-boxes the exposure ranged from 0.001 to 0.01 W/m². No statistically significant differences in the number of eggs or in the number of nestlings were observed between the two series (exposed, control) of tits.

6. Conclusions

The EMF were, are and will be a part of our life. The progress of science will provide the world with new EMF emitting technologies and subsequently with new problems. The monitoring of literature on this scientific field shows a shift of research which follows exactly the new technologies. The era of mobile telephony is beginning.

The evaluation of the possible effects of EMF on the living organism is a complex process that needs the combined contributions of many scientific disciplines. Due to the need for expertise in many different sciences, together with the technical problems of radiation studies, many times the published results are considered deficient in certain aspects. This is inevitable, and not an indication of poor quality. The inability to observe a biological effect in a particular study does not necessarily mean that such effect or/and adverse health effect is not present.

The vertebrate animal studies summarized in the present paper do not suggest strong effects of LF EMF on the male genital system. However, some studies on the development of animals, showed sensitivity, mainly observed in chickens. There is no convincing evidence from studies of mammals (Table 3), that exposure to EMF at levels associated with mobile telecommunications could be harmful for embryonic or postnatal development or for male fertility. On the other hand, the birds appeared to be more sensitive. The effects of EMF on the female genital system need further attention, since two experimental studies cannot lead to definitive conclusions.

The positive findings of the experimental studies with vertebrate animals are mainly attributed to the thermal effects of EMF. No valid evidence was found for the occurrence of nonthermal effects. However the non-thermal mechanisms must be the next target of the research.

The majority of reviewed studies were conducted in laboratories. This fact cannot represent the realistic situation of cell phone communication. On the other hand, the *in vivo* and simultaneously *in situ* studies are very scarce. Only Magras and Xenos conducted an *in situ* experiment which took place near an antenna park. That is because this kind of experiment is very difficult to carry out, and interaction with other exogenous factors could change the results.

One particular deficiency in most studies is that they describe experiments with acute or short-term exposure of animals on EMF. Experiments are needed to perform longterm exposure in order to demonstrate the chronic impact of EMF. Another point that must be elucidated is that the majority of experimental animals used were small rodents (mice and rats), as well as chicken embryos. Further research is needed with the use of bigger animals such as dog and sheep.

The radiations emitted from masts that are situated in many rural and sylvatic areas could be possibly pathogenic in the wild animals. The wild animal populations could be candidate "experimental material" for closer observation of the possible effects of EMF on vertebrate models.

An important and intriguing aspect of the research is the possible role of the combination of RF with other pollutants such as chemical substances and other forms of radiation, as well as the interaction with drugs.

The potential health effects of EMF should be continually reassessed as new research results become available. EMF exposure guidelines also need to be updated or reconsidered as new scientific information on radiation and health risks is produced. However, additional studies might increase our understanding of the sensitivity of organisms to EMF.

References

- J. Juutilainen, Developmental effects of electromagnetic fields, Bioelectromagnetics 7 (2005) S107–S115.
- [2] P.A. Valberg, T.E. van Deventer, M.H. Repacholi, Workgroup report: base stations and wireless networks-radiofrequency (RF) exposures and health consequences, Environ. Health Perspect. 115 (2007) 416– 424.
- [3] M.H. Repacholi, Health risks from the use of mobile phones, Toxicol. Lett. 120 (2001) 323–331.
- [4] L.J. Challis, Mechanisms for interaction between RF fields and biological tissue, Bioelectromagnetics 7 (2005) S98–S106.
- [5] B.C.A. Windle, On certain early malformations of the embryo, J. Anat. Physiol. 27 (1893) 436–453.
- [6] B.C.A. Windle, On the effects of electricity and magnetism on development, J. Anat. Physiol. 29 (1895) 346–351.
- [7] H.J. Cook, N.H. Steneck, A.J. Vander, G.L. Kane, Early research on the biological effects of microwave radiation: 1940–1960, Ann. Sci. 37 (1980) 323–351.
- [8] W.M. Leach, Genetic, growth and reproductive effects of microwave radiation, Bull. N.Y. Acad. Med. 56 (1980) 249–257.
- [9] B. Algers, K. Hennichs, Biological effects of electromagnetic fields. A review, Vet. Res. Commun. 6 (1983) 265–279.
- [10] T.E. Bryan, R.P. Gildersleeve, Effects of nonionizing radiation on birds, Comp. Biochem. Physiol. 89A (1988) 511–530.
- [11] E. Berman, L. Chacon, D. House, Development of chicken embryos in a pulsed magnetic field, Bioelectromagnetics 11 (1990) 169–187.
- [12] J. Juutilainen, Effects of low-frequency magnetic fields on embryonic development and pregnancy, Scand. J. Work Environ. Health. 17 (1991) 149–158.
- [13] N. Chernoff, J.M. Rogers, R. Kavet, A review of the literature on potential reproductive and developmental toxicity of electric and magnetic fields, Toxicology 74 (1992) 91–126.
- [14] R.L. Brent, W.E. Gordon, W.R. Bennett, D.A. Beckman, Reproductive and teratologic effects of electromagnetic fields, Reprod. Toxicol. 7 (1993) 535–580.
- [15] R.P. Jensh, Behavioral teratological studies using microwave radiation: is there an increased risk from exposure to cellular phones and microwave ovens? Reprod. Toxicol. 11 (1997) 601–611.

- [16] L. Verschaeve, A. Maes, Genetic, carcinogenic and teratogenic effects of radiofrequency fields, Mutation Res. 410 (1998) 141– 165.
- [17] H. Huuskonen, M.-L. Lindbohm, J. Juutilainen, Teratogenic and reproductive effects of low-frequency magnetic fields, Mutation Res. 410 (1998) 167–183.
- [18] R.L. Brent, Reproductive and teratologic effects of low-frequency electromagnetic fields: a review of *in vivo* and *in vitro* studies using animal models, Teratology 59 (1999) 261–286.
- [19] M.E. O'Connor, Mammalian teratogenesis and radiofrequency fields, Proc. IEEE 68 (1980) 56–60.
- [20] L.N. Heynick, J.H. Merritt, Radiofrequency fields and teratogenesis, Bioelectromagnetics 6 (2003) (2003) \$174–\$186.
- [21] J. Juutilainen, Developmental effects of extremely low frequency electric and magnetic fields, Radiat. Prot. Dosim. 106 (2003) 385– 390.
- [22] W. Löscher, Die Auswirkungen electromagnetischer Felder von Mobilfunksendeanlagen auf Leistung, Gesunheit und Verhalten landwirtschaftlicher Nutzitere: Eine Bestandsaufnahme, Der practiche Tierarzt 84 (2003) 850–863.
- [23] R.D. Saunders, C.D. McCaig, Developmental effects of physiologically weak electric fields and heat: an overview, Bioelectromagnetics 7 (2005) S127–S132.
- [24] K.J. Fernie, S.J. Reynolds, The effects of electromagnetic fields from power lines on avian reproductive biology and physiology: a review, J. Toxic Environ. Health B 8 (2005) 127–140.
- [25] D. Krewski, B.W. Glickman, R.W.Y. Habash, B. Habbick, W.G. Lotz, R. Mandeville, F.S. Prato, T. Salem, D.F. Weaver, Recent advances in research on radiofrequency fields and health: 2001–2003, J Toxic Environ. Health B 10 (2007) 287–318.
- [26] T. Shigemitsu, K. Yamazaki, S. Nakasono, M. Kakkikawa, A review of studies of the biological effects of electromagnetic fields in the intermediate frequency range, IEEJ Trans. Electr. Electron. Eng. 2 (2007) 405–412.
- [27] A. Elbetieha, M.A. Al-Akhras, H. Darmani, Long-term exposure of male and female mice to 50 Hz magnetic field: effects on fertility, Bioelectromagnetics 23 (2002) 168–172.
- [28] J.A. Heredia-Rojas, D.E. Caballero-Hernandez, A.O. Rodriguez-De La Fuente, G. Ramos-Alfano, L.E. Rodriguez-Flores, Lack of alterations on meiotic chromosomes and morphological characteristics of male germ cells in mice exposed to a 60 Hz and 2.0 mT magnetic field, Bioelectromagnetics 25 (2004) 63–68.
- [29] J.S. Lee, S.S. Ahn, K.C. Jung, Y.W. Kim, S.K. Lee, Effects of 60 Hz electromagnetic field exposure on testicular germ cell apoptosis in mice, Asian J. Androl. 6 (2004) 29–34.
- [30] M.K. Chung, S.J. Lee, Y.B. Kim, S.C. Park, D.H. Shin, S.H. Kim, J.C. Kim, Evaluation of spermatogenesis and fertility in F1 male rats after *in utero* and neonatal exposure to extremely low frequency electromagnetic fields, Asian J. Androl. 7 (2005) 189–194.
- [31] M.A. Al-Akhras, H. Darmani, A. Elbetieha, Influence of 50 Hz magnetic field on sex hormones and other fertility parameters of adult male rats, Bioelectromagnetics 27 (2006) 127–131.
- [32] M.Z. Akdag, S. Dasdag, F. Aksen, B. Isik, F. Yilmaz, Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53 and trace elements, Med. Sci. Monit. 12 (2006) 366–371.
- [33] F. Aksen, M.Z. Akdag, A. Ketani, B. Yokus, A. Kaya, S. Dasdag, Effect of 50 Hz 1 mT magnetic field on the uterus and ovaries of rats, Med. Sci. Monit. 12 (2006) 215–220.
- [34] S.H. Kim, H.J. Lee, S.Y. Choi, Y.M. Gimm, J.K. Pack, H.D. Choi, Y.S. Lee, Toxicity bioassay in Sprague–Dawley rats exposed to 20 kHz triangular magnetic field for 90 days, Bioelectromagnetics 27 (2006) 105–111.
- [35] A.A. Khaki, R.S. Tubbs, M.M. Shoja, J.S. Rad, A. Khaki, R.M. Farahani, S. Zarrintan, T.C. Nag, The effects of an electromagnetic field on the boundary tissue of the seminiferous tubules of the rat: a light and transmission electron microscope study, Folia Morphol. 65 (2006) 188–194.

- [36] H.J. Lee, S.H. Kim, S.Y. Choi, Y.M. Gimm, J.K. Pack, H.D. Choi, Y.S. Lee, Long-term exposure of Sprague–Dawley rats to 20 kHz triangular magnetic fields, Int. J. Radiat. Biol. 82 (2006) 285–291.
- [37] T.I. Subbotina, O.V. Tereshkina, A.A. Khadartsev, A.A. Yashin, Effect of low-intensity extremely high frequency radiation on reproductive function in Wistar rats, Bull. Exp. Biol. Med. 142 (2006) 189–190.
- [38] S. Erpek, M.D. Bilgin, E. Dikicioglu, A. Karul, The effects of low frequency electric field in rat testis, Revue Méd. Vét 158 (2007) 206–212.
- [39] S. Dasdag, M.A. Ketani, Z. Akdag, A.R. Ersay, I. Sari, O.C. Demirtas, M.S. Celik, Whole body microwave exposure emitted by cellular phones and testicular function of rats, Urol. Res. 27 (1999) 219–223.
- [40] S. Dasdag, M.Z. Akdag, F. Aksen, F. Yilmaz, M. Bashan, M.M. Dasdag, M.S. Celik, Whole body exposure of rats to microwaves emitted from a cell phone does not affect the testes, Bioelectromagnetics 24 (2003) 182–188.
- [41] R.J. Aitken, L.E. Bennetts, D. Sawyer, A.M. Wiklendt, B.V. King, Impact of radio frequency electromagnetic radiation on DNA integrity in the male germ line Inter, J. Androl. 28 (2005) 171–179.
- [42] M. Ozguner, A. Koyu, G. Cesur, M. Ural, F. Ozguner, A. Gokcimen, N. Delibas, Biological and morphological effects on the reproductive organ of rats after exposure to electromagnetic field, Saudi Med. J. 26 (2005) 405–410.
- [43] Z. Forgács, Z. Somosy, G. Kubinyi, J. Bakos, A. Hudák, A. Surján, G. Thuróczy, Effects of whole body 1800 MHz GSM-like microwave exposure on testicular stereidogenesis and histology in mice, Reprod. Toxicol. 22 (2006) 111–117.
- [44] E.P. Ribeiro, E.L. Rhoden, M.M. Horn, C. Rhoden, L.P. Lima, L. Toniolo, Effects of sub chronic exposure to radio frequency from a conventional cellular telephone on testicular function in adult rats, J. Urol. 177 (2007) 395–399.
- [45] J.G. Yan, M. Agresti, T. Bruce, Y.H. Yan, A. Granlund, H.S. Matloub, Effects of cellular phone emissions on sperm motility in rats, Fertil. Steril. 88 (2007) 957–964.
- [46] F. Yilmaz, S. Dasdag, M.Z. Akdag, N. Kilinc, Whole body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein, Electromagn. Biol. Med. 27 (2008) 65–72.
- [47] S. Dasdag, M.Z. Akdag, E. Ulukaya, A.K. Uzunlar, D. Yegin, Mobile phone exposure does not induce apoptosis on spermatogenesis in rats, Arch. Med. Res. 39 (2008) 40–44.
- [48] B. Oral, M. Guney, F. Ozguner, N. Karahan, T. Mungan, S. Comlekci, G. Cesur, Endometrial apoptosis induced by a 900 MHz mobile phone: preventive effects of vitamins E and C, Adv. Ther. 23 (2006) 957–973.
- [49] M. Guney, F. Ozguner, B. Oral, N. Karahan, T. Mungan, 900 MHz radiofrequency induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C, Toxicol. Ind. Health 23 (2007) 411–420.
- [50] T. Negishi, S. Imai, M. Itabashi, I. Nishimura, T. Sasano, Studies of 50 Hz circularly polarized magnetic fields of up to 350 mT on reproduction and embryo-fetal development in rats: exposure during organogenesis or during preimplantation, Bioelectromagnetics 23 (2002) 369–389.
- [51] Y. Ohnishi, F. Mizuno, T. Sato, M. Yasui, T. Kikuchi, M. Ogawa, Effects of power frequency alternating magnetic fields on reproduction and prenatal development of mice, J. Toxicol. Sci. 27 (2002) 131–138.
- [52] Z.E. Gagnon, C. Newkirk, J.A. Conetta, M.A. Sama, S. Sisselman, Teratogenic effect of broad-band electromagnetic field on neonatal mice, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 38 (2003) 2465–2481.
- [53] M.K. Chung, J.C. Kim, S.H. Myung, D.I. Lee, Developmental toxicity evaluation of ELF magnetic fields in Sprague–Dawley rats, Bioelectromagnetics 24 (2003) 231–240.
- [54] M.S. Lahijani, K. Sajadi, Development of preincubated chicken eggs following exposure to 50 Hz electromagnetic fields with 1.33–7.32 mT flux densities, Indian J. Exp. Biol. 42 (2004) 858–865.
- [55] S.H. Kim, J.E. Song, S.R. Kim, H. Oh, Y.M. Gimm, D.S. Yoo, J.K. Pack, Y.S. Lee, Teratological studies of prenatal exposure of mice to a

20 kHz sawtooth magnetic field, Bioelectromagnetics 25 (2004) 114–117.

- [56] O. Roda-Murillo, J.A. Roda-Moreno, M.T. Morente–Chiquero, Effects of low-frequency magnetic fields on different parameters of embryo of *Gallus domesticus*, Electromagn. Biol. Med. 24 (2005) 55–62.
- [57] K. Saito, H. Suzuki, K. Suzuki, Teratogenic effects of static magnetic field on mouse fetuses, Reprod. Toxicol. 22 (2006) 118–124.
- [58] Y.N. Cao, Y. Zhang, Y. Liu, Effects of exposure to extremely low frequency electromagnetic fields on reproduction of female mice and development of offspring, Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 24 (2006) 468–470.
- [59] M.S. Lahijani, S.E. Nojooshi, S.F. Siadat, Light and electron microscope studies of effects of 50 Hz electromagnetic fields on preincubated chick embryo, Electromagn. Biol. Med. 26 (2007) 83–98.
- [60] W.F. Krueger, A.J. Giarola, J.W. Bradley, A. Shrekenhamer, Effects of electromagnetic fields on fecundity in the chicken, Ann. N.Y. Acad. Sci. 247 (1975) 391–400.
- [61] R.P. Jensh, I. Weinberg, R.I. Brent, Teratologic studies of prenatal exposure of rats to 915 MHz microwave radiation, Radiat. Res. 92 (1982) 160–171.
- [62] R.P. Jensh, W.H. Vogel, R.I. Brent, Postnatal functional analysis of prenatal exposure of rats to 915 MHz microwave radiation, Int. J. Toxicol. 1 (1982) 73–90.
- [63] E. Berman, C. Weil, P.A. Philips, H.B. Carter, D.E. House, Fetal and maternal effects of continual exposure of rats to 970 MHz circularlypolarized microwaves, Electromagn. Biol. Med. 11 (1992) 43– 54.
- [64] S. Klug, M. Hetscher, S. Giles, S. Kohlsman, K. Kramer, The lack of effects of nonthermal RF electromagnetic fields on the development of rat embryos grown in culture, Life Sci. 61 (1997) 1789– 1802.
- [65] I.N. Magras, T.D. Xenos, RF radiation-induced changes in the prenatal development of mice, Bioelectromagnetics 18 (1997) 455–461.

- [66] M. Bornhausen, H. Scheingraber, Prenatal exposure to 900 MHz cell phone electromagnetic fields had no effect on operant-behaviour performances of adult rats, Bioelectromagnetics 21 (2000) 566–574.
- [67] S. Dasdag, M.Z. Akdag, O. Ayyildiz, O.C. Demirtas, M. Yayla, C. Sert, Do cellular phones alter blood parameters and birth weight of rats? Electromagn. Biol. Med. 19 (2000) 107–113.
- [68] B.L. Cobb, J.R. Jauchem, P.A. Mason, M.P. Dooley, S.A. Miller, J.M. Ziriax, M.R. Murphy, Neural and behavioural teratological evaluation of rats exposed to Ultra-Wideband electromagnetic fields, Bioelectromagnetics 21 (2000) 524–537.
- [69] M. Bastide, B.J. Youbicier-Simoa, J.C. Lebecq, J. Giaimis, Toxicologic study of electromagnetic radiation emitted by television and video display screens and cellular telephones on chickens and mice, Indoor Built Environ. 10 (2001) 291–298.
- [70] Y. Grigoryev, Biological effects of mobile phone electromagnetic field on chick embryo (Risk assessment using the mortality rate), Radiats. Biol. Radioecol. 43 (2003) 541–543.
- [71] I.V. Ingole, S.K. Ghosh, Cell phone radiation and developing tissues in chicken embryo—a light microscopic study of kidneys, J. Anat. Soc. India 55 (2006) 19–23.
- [72] T. Kumlin, H. Iivonen, P. Miettenen, A. Junoven, T. van Groen, L. Puranen, R. Pitkäaho, R. Juutilainen, H. Tanila, Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats, Radiat. Res. 168 (2007) 471–479.
- [73] F. Batellier, I. Couty, D. Picard, J.P. Brillard, Effects of exposing chicken eggs to a cell phone in 'call' position over the entire incubation period, Theriogenology 69 (2008) 737–745.
- [74] A. Balmori, Possible effects of electromagnetic fields from phone masts on a population of White stork (*Ciconia ciconia*), Electromagn. Biol. Med. 24 (2005) 109–119.
- [75] L. Rejt, T. Mazgajski, R. Kubacki, J. Kieliszek, E. Sobiczewska, S. Szmigielski, Influence of radar radiation on breeding biology of tits (*Parus* sp), Electromagn. Biol. Med. 26 (2007) 235–238.